Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.940
Filtrar
1.
J Physiol ; 602(7): 1273-1295, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513000

RESUMO

Vision relies on the continuous exchange of material between the photoreceptors, retinal pigment epithelium and choriocapillaris, a dense microvascular bed located underneath the outer retina. The anatomy and physiology of the choriocapillaris and their association with retinal homeostasis have proven difficult to characterize, mainly because of the unusual geometry of this vascular bed. By analysing tissue dissected from 81 human eyes, we show that the thickness of the choriocapillaris does not vary significantly over large portions of the macula or with age. Assessments of spatial variations in the anatomy of the choriocapillaris in three additional human eyes indicate that the location of arteriolar and venular vessels connected to the plane of the choriocapillaris is non-random, and that venular insertions cluster around arteriolar ones. Mathematical models built upon these anatomical analyses reveal that the choriocapillaris contains regions where the transport of passive elements is dominated by diffusion, and that these diffusion-limited regions represent areas of reduced exchange with the outer retina. The width of diffusion-limited regions is determined by arterial flow rate and the relative arrangement of arteriolar and venular insertions. These analyses demonstrate that the apparent complexity of the choriocapillaris conceals a fine balance between several anatomical and functional parameters to effectively support homeostasis of the outer retina. KEY POINTS: The choriocapillaris is the capillary bed supporting the metabolism of photoreceptors and retinal pigment epithelium, two critical components of the visual system located in the outer part of the retina. The choriocapillaris has evolved a planar multipolar vascular geometry that differs markedly from the branched topology of most vasculatures in the human body. Here, we report that this planar multipolar vascular geometry is associated with spatially heterogenous molecular exchange between choriocapillaris and outer retina. Our data and analyses highlight a necessary balance between choriocapillaris anatomical and functional parameters to effectively support homeostasis of the outer retina.


Assuntos
Corioide , Retina , Humanos , Corioide/irrigação sanguínea , Vasos Retinianos , Capilares , Arteríolas
2.
Commun Biol ; 7(1): 332, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491167

RESUMO

Ischemic stroke produces the highest adult disability. Despite successful recanalization, no-reflow, or the futile restoration of the cerebral perfusion after ischemia, is a major cause of brain lesion expansion. However, the vascular mechanism underlying this hypoperfusion is largely unknown, and no approach is available to actively promote optimal reperfusion to treat no-reflow. Here, by combining two-photon laser scanning microscopy (2PLSM) and a mouse middle cerebral arteriolar occlusion (MCAO) model, we find myogenic vasomotion deficits correlated with post-ischemic cerebral circulation interruptions and no-reflow. Transient occlusion-induced transient loss of mitochondrial membrane potential (ΔΨm) permanently impairs mitochondria-endoplasmic reticulum (ER) contacts and abolish Ca2+ oscillation in smooth muscle cells (SMCs), the driving force of myogenic spontaneous vasomotion. Furthermore, tethering mitochondria and ER by specific overexpression of ME-Linker in SMCs restores cytosolic Ca2+ homeostasis, remotivates myogenic spontaneous vasomotion, achieves optimal reperfusion, and ameliorates neurological injury. Collectively, the maintaining of arteriolar myogenic vasomotion and mitochondria-ER contacts in SMCs, are of critical importance in preventing post-ischemic no-reflow.


Assuntos
Isquemia , Músculo Liso Vascular , Animais , Camundongos , Arteríolas , Miócitos de Músculo Liso
3.
Comput Biol Med ; 172: 108255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461696

RESUMO

Retinal fundus images serve as a non-invasive modality to obtain information pertaining to retinal vessels through fundus photography, thereby offering insights into cardiovascular and cerebrovascular diseases. Retinal arteriolar morphometry has emerged as the most convenient and fundamental clinical methodology in the realm of patient screening and diagnosis. Nevertheless, the analysis of retinal arterioles is challenging attributable to imaging noise, stochastic fuzzy characteristics, and blurred boundaries proximal to blood vessels. In response to these limitations, we introduce an innovative methodology, named PKSEA-Net, which aims to improve segmentation accuracy by enhancing the perception of edge information in retinal fundus images. PKSEA-Net employs the universal architecture PVT-v2 as the encoder, complemented by a novel decoder architecture consisting of an Edge-Aware Block (EAB) and a Pyramid Feature Fusion Module (PFFM). The EAB block incorporates prior knowledge for supervision and multi-query for multi-task learning, with supervision information derived from an enhanced Full Width at Half Maximum (FWHM) algorithm and gradient map. Moreover, PFFM efficiently integrates multi-scale features through a novel attention fusion method. Additionally, we have collected a Retinal Cross-Sectional Vessel (RCSV) dataset derived from approximately 200 patients in Quzhou People's Hospital to serve as the benchmark dataset. Comparative evaluations with several state-of-the-art (SOTA) networks confirm that PKSEA-Net achieves exceptional experimental performance, thereby establishing its status as a SOTA approach for precise boundary delineation and retinal vessel segmentation.


Assuntos
Aprendizagem , Vasos Retinianos , Humanos , Arteríolas/diagnóstico por imagem , Estudos Transversais , Vasos Retinianos/diagnóstico por imagem , Algoritmos , Processamento de Imagem Assistida por Computador
5.
Neuroimage ; 287: 120512, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199427

RESUMO

Neurovascular coupling (NVC), or the adjustment of blood flow in response to local increases in neuronal activity is a hallmark of healthy brain function, and the physiological foundation for functional magnetic resonance imaging (fMRI). However, it remains only partly understood due to the high complexity of the structure and function of the cerebrovascular network. Here we set out to understand NVC at the network level, i.e. map cerebrovascular network reactivity to activation of neighbouring neurons within a 500×500×500 µm3 cortical volume (∼30 high-resolution 3-nL fMRI voxels). Using 3D two-photon fluorescence microscopy data, we quantified blood volume and flow changes in the brain vessels in response to spatially targeted optogenetic activation of cortical pyramidal neurons. We registered the vessels in a series of image stacks acquired before and after stimulations and applied a deep learning pipeline to segment the microvascular network from each time frame acquired. We then performed image analysis to extract the microvascular graphs, and graph analysis to identify the branch order of each vessel in the network, enabling the stratification of vessels by their branch order, designating branches 1-3 as precapillary arterioles and branches 4+ as capillaries. Forty-five percent of all vessels showed significant calibre changes; with 85 % of responses being dilations. The largest absolute CBV change was in the capillaries; the smallest, in the venules. Capillary CBV change was also the largest fraction of the total CBV change, but normalized to the baseline volume, arterioles and precapillary arterioles showed the biggest relative CBV change. From linescans along arteriole-venule microvascular paths, we measured red blood cell velocities and hematocrit, allowing for estimation of pressure and local resistance along these paths. While diameter changes following neuronal activation gradually declined along the paths; the pressure drops from arterioles to venules increased despite decreasing resistance: blood flow thus increased more than local resistance decreases would predict. By leveraging functional volumetric imaging and high throughput deep learning-based analysis, our study revealed distinct hemodynamic responses across the vessel types comprising the microvascular network. Our findings underscore the need for large, dense sampling of brain vessels for characterization of neurovascular coupling at the network level in health and disease.


Assuntos
Encéfalo , Circulação Cerebrovascular , Humanos , Circulação Cerebrovascular/fisiologia , Encéfalo/fisiologia , Neurônios/fisiologia , Arteríolas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
6.
Nat Neurosci ; 27(2): 232-248, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168932

RESUMO

Neurovascular coupling (NVC) is important for brain function and its dysfunction underlies many neuropathologies. Although cell-type specificity has been implicated in NVC, how active neural information is conveyed to the targeted arterioles in the brain remains poorly understood. Here, using two-photon focal optogenetics in the mouse cerebral cortex, we demonstrate that single glutamatergic axons dilate their innervating arterioles via synaptic-like transmission between neural-arteriolar smooth muscle cell junctions (NsMJs). The presynaptic parental-daughter bouton makes dual innervations on postsynaptic dendrites and on arteriolar smooth muscle cells (aSMCs), which express many types of neuromediator receptors, including a low level of glutamate NMDA receptor subunit 1 (Grin1). Disruption of NsMJ transmission by aSMC-specific knockout of GluN1 diminished optogenetic and whisker stimulation-caused functional hyperemia. Notably, the absence of GluN1 subunit in aSMCs reduced brain atrophy following cerebral ischemia by preventing Ca2+ overload in aSMCs during arteriolar constriction caused by the ischemia-induced spreading depolarization. Our findings reveal that NsMJ transmission drives NVC and open up a new avenue for studying stroke.


Assuntos
Acoplamento Neurovascular , Camundongos , Animais , Acoplamento Neurovascular/fisiologia , Vasodilatação/fisiologia , Axônios , Transmissão Sináptica , Arteríolas/metabolismo , Miócitos de Músculo Liso
7.
Biochem Pharmacol ; 219: 115961, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049010

RESUMO

BACKGROUND: The micronutrient zinc (Zn2+) is critical for cell function as intracellular signaling and endogenous ligand for Zn2+ sensing receptor (ZnR). Although cytosolic Zn2+ (cyt) signaling in the vascular system was studied previously, role of the ZnR has not been explored in vascular physiology. METHODS: ZnR-mediated relaxation response of human submucosal arterioles and the mesenteric arterioles from wide-type (WT), ZnR-/- and TRPV4-/- mice were determined by a Mulvany-style wire myograph. The perfused vessel density (PVD) of mouse mesenteric arterioles was also measured in in vivo study. The expression of ZnR in arterioles and vascular endothelial cells (VEC) were examined by immunofluorescence staining, and its function was characterized in VEC by Ca2+ imaging and patch clamp study. RESULTS: ZnR expression was detected on human submucosal arterioles, murine mesenteric arterioles and VEC but not in ZnR-/- mice. ZnR activation predominately induced endothelium-dependent hyperpolarization (EDH)-mediated vasorelaxation of arterioles in vitro and in vivo via Ca2+ signaling, which is totally different from endothelium-dependent vasorelaxation via Zn2+ (cyt) signaling reported previously. Furthermore, ZnR-induced vasorelaxation via EDH was significantly impaired in ZnR-/- and TRPV4-/- mice. Mechanistically, ZnR induced endothelium-dependent vasorelaxation predominately via PLC/IP3/IP3R and TRPV4/SOCE. The role of ZnR in regulating Ca2+ signaling and ion channels on VEC was verified by Ca2+ imaging and patch clamp techniques. CONCLUSION: ZnR activation induces endothelium-dependent vasorelaxation of resistance vessels predominately via TRPV4/Ca2+/EDH pathway. We therefore not only provide new insights into physiological role of ZnR in vascular system but also may pave a potential pathway for developing Zn2+-based treatments for vascular disease.


Assuntos
Canais de Cátion TRPV , Vasodilatação , Humanos , Camundongos , Animais , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Células Endoteliais/metabolismo , Arteríolas/metabolismo , Zinco/metabolismo , Endotélio Vascular/metabolismo
8.
Microvasc Res ; 152: 104625, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37979909

RESUMO

Previous studies have shown that expression of the endothelial laminin receptor α6ß4 integrin in the brain is uniquely restricted to arterioles. As exposure to chronic mild hypoxia (CMH, 8 % O2) stimulates robust angiogenic and arteriogenic remodeling responses in the brain, the goal of this study was to determine how CMH influences cerebrovascular expression of the ß4 integrin as well as its potential ligands, laminin 411 and 511, containing the α4 and α5 laminin subunits respectively, and then define how aging impacts this expression. We observed the following: (i) CMH launched a robust arteriogenic remodeling response both in the young (10 weeks) and aged (20 months) brain, correlating with an increased number of ß4 integrin+ vessels, (ii) while the laminin α4 subunit is expressed evenly across all cerebral blood vessels, laminin α5 was highly expressed preferentially on ß4 integrin+ arterioles, (iii) CMH-induced arteriolar remodeling was associated with strong downregulation of the laminin α4 subunit but no change in the laminin α5 subunit, (iv) in addition to its expression on arterioles, ß4 integrin was also expressed at lower levels on capillaries specifically in white matter (WM) tracts but not in the grey matter (GM), and (v), these observations were consistent in both the brain and spinal cord, and age had no obvious impact. Taken together, our findings suggest that laminin 511 may be a specific ligand for α6ß4 integrin and that dynamic switching of the laminin subunits α4 and α5 might play an instructive role in arteriogenic remodeling. Furthermore, ß4 integrin expression differentiates WM from GM capillaries, highlighting a novel and important difference.


Assuntos
Integrina alfa6beta4 , Integrina beta4 , Humanos , Arteríolas/metabolismo , Integrina alfa6beta4/metabolismo , Laminina/metabolismo , Hipóxia
9.
Clin Biochem ; 123: 110687, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37989475

RESUMO

BACKGROUND: Intrarenal arteriolar disease is a major risk factor for poor prognosis in immunoglobulin A nephropathy (IgAN). The morphologic factor sonic hedgehog (SHH) plays an important role in a variety of vascular diseases, so it may be directly or indirectly involved in the process of renal arteriolar disease. The purpose of this study was to investigate the correlation between serum SHH levels and renal arteriole disease in patients with IgAN. METHODS: Subjects with primary IgAN diagnosed by renal biopsy performed between October 2018 and August 2019 at the First Medical Center of the Chinese PLA General Hospital were recruited. Blood specimens were collected from the patients within 1 week before renal biopsy after they signed an informed consent form, and healthy controls were recruited for blood specimen collection during the same period. The concentration of serum SHH was measured by enzyme-linked immunosorbent assay in this population. RESULTS: Serum SHH levels were significantly lower in the IgAN group than in the control group. 41 of the 94 subjects diagnosed with IgAN had severe renal arteriolosclerosis and, compared to their less severely affected counterparts, were older, more hypertensive, and characterized by lower levels of SHH, higher levels of tubular atrophy/interstitial fibrosis and a higher Lee's classification. Serum SHH concentration was found to be an independent predictor of severe intrarenal arteriolosclerosis in IgAN subjects after correction using multivariate analysis. CONCLUSION: In this study, serum SHH levels were found to be significantly lower in patients with IgAN than in healthy subjects. Serum SHH may serve as a noninvasive biomarker of intrarenal arteriolosclerosis in patients with IgAN.


Assuntos
Arteriolosclerose , Glomerulonefrite por IGA , Hipertensão , Humanos , Arteríolas/patologia , Arteriolosclerose/patologia , Proteínas Hedgehog , Rim/patologia , Prognóstico
10.
Eur Radiol ; 34(1): 444-454, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37505247

RESUMO

OBJECTIVES: By analyzing the distribution of existing and newly proposed staging imaging features in pT1-3 and pT4a tumors, we searched for a salient feature and validated its diagnostic performance. METHODS: Preoperative multiphase contrast-enhanced CT images of the training cohort were retrospectively collected at three centers from January 2016 to December 2017. We used the chi-square test to analyze the distribution of several stage-related imaging features in pT1-3 and pT4a tumors, including small arteriole sign (SAS), outer edge of the intestine, tumor invasion range, and peritumoral adipose tissue. Preoperative multiphase contrast-enhanced CT images of the validation cohort were retrospectively collected at Beijing Cancer Hospital from January 2018 to December 2018. The diagnostic performance of the selected imaging feature, including accuracy, sensitivity, and specificity, was validated and compared with the conventional clinical tumor stage (cT) by the McNemar test. RESULTS: In the training cohort, a total of 268 patients were enrolled, and only SAS was significantly different between pT1-3 and pT4a tumors. The accuracy, sensitivity, and specificity of the SAS and conventional cT in differentiating T1-3 and T4a tumors were 94.4%, 81.6%, and 97.3% and 53.7%, 32.7%, and 58.4%, respectively (all p < 0.001). In the validation cohort, a total of 135 patients were collected. The accuracy, sensitivity, and specificity of the SAS and the conventional cT were 93.3%, 76.2%, and 96.5% and 62.2%, 38.1%, and 66.7%, respectively (p < 0.001, p = 0.021, p < 0.001). CONCLUSION: Small arteriole sign positivity, an indirect imaging feature of serosa invasion, may improve the accuracy of identifying T4a colon cancer. CLINICAL RELEVANCE STATEMENT: Small arteriole sign helps to distinguish T1-3 and T4a colon cancer and further improves the accuracy of preoperative CT staging of colon cancer. KEY POINTS: • The accuracy of preoperative CT staging of colon cancer is not ideal, especially for T4a tumors. • Small arteriole sign (SAS) is a newly defined imaging feature that shows the appearance of tumor-supplying arterioles at the site where they penetrate the intestine wall. • SAS is an indirect imaging marker of tumor invasion into the serosa with a great value in distinguishing between T1-3 and T4a colon cancer.


Assuntos
Neoplasias do Colo , Humanos , Arteríolas , Estudos Retrospectivos , Estadiamento de Neoplasias , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/patologia , Tomografia Computadorizada por Raios X
11.
J Cereb Blood Flow Metab ; 44(2): 155-168, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37728791

RESUMO

Hypoglycemia is a serious complication of insulin treatment of diabetes that can lead to coma and death. Neurovascular coupling, which mediates increased local blood flow in response to neuronal activity, increases glucose availability to active neurons. This mechanism could be essential for neuronal health during hypoglycemia, when total glucose supplies are low. Previous studies suggest, however, that neurovascular coupling (a transient blood flow increase in response to an increase in neuronal activity) may be reduced during hypoglycemia. Such a reduction in blood flow increase would exacerbate the effects of hypoglycemia, depriving active neurons of glucose. We have reexamined the effects of hypoglycemia on neurovascular coupling by simultaneously monitoring neuronal and vascular responses to whisker stimulation in the awake mouse somatosensory cortex. We find that neurovascular coupling at both penetrating arterioles and at 2nd order capillaries did not change significantly during insulin-induced hypoglycemia compared to euglycemia. In addition, we show that the basal diameter of both arterioles and capillaries increases during hypoglycemia (10.3 and 9.7% increases, respectively). Our results demonstrate that both neurovascular coupling and basal increases in vessel diameter are active mechanisms which help to maintain an adequate supply of glucose to the brain during hypoglycemia.


Assuntos
Hipoglicemia , Insulinas , Acoplamento Neurovascular , Camundongos , Animais , Acoplamento Neurovascular/fisiologia , Arteríolas/metabolismo , Capilares/metabolismo , Circulação Cerebrovascular/fisiologia , Vibrissas/fisiologia , Hipoglicemia/induzido quimicamente , Hipoglicemia/metabolismo , Glucose/metabolismo , Insulinas/metabolismo , Insulinas/farmacologia
12.
Nutr Metab Cardiovasc Dis ; 34(1): 188-197, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37798229

RESUMO

BACKGROUND AND AIMS: Retinal arteriolar narrowing and venular widening are associated with increased cardiovascular risk, even at young ages. Whether diet contributes to early microvascular changes in children is not widely explored. We explored the associations of frequency of healthy and unhealthy food group intake with retinal vessel calibers in black and white children. METHODS AND RESULTS: This study included school-aged (5-9 years) black (N = 433, 7.46 ± 0.98 years), and white (N = 403, 7.43 ± 0.82 years) children. Anthropometric and blood pressure measurements were taken, along with retinal vessel calibers (central retinal arteriolar (CRAE) and venular (CRVE) equivalents). Frequencies of food group intake were assessed using a food-frequency questionnaire. A factor analysis was performed to describe food group patters. Independent associations between retinal vessel calibers and frequencies of food group intake and food group patters were explored. In black children, cookies, cakes, and biscuits were associated with narrower arterioles (p < 0.05). In white children, cold sweetened beverages were associated with narrower arterioles (p = 0.02), whereas salty snacks were associated with narrower arterioles (p = 0.01) and wider venules (p < 0.05). Fruits were positively associated with CRAE (p = 0.03) in white children only. CONCLUSION: A higher frequency of unhealthy food group consumption was associated with retinal arteriolar narrowing and venular widening in both black and white children. However, fruit intake was shown beneficial for retinal microvascular health in white children only. Our findings may highlight the importance of promoting healthy eating patterns from early childhood which may reduce the risk of premature cardiovascular disease development.


Assuntos
Doenças Cardiovasculares , Vasos Retinianos , Criança , Humanos , Pré-Escolar , Adolescente , África do Sul/epidemiologia , Dieta , Arteríolas , Ingestão de Alimentos , Vênulas
13.
J Hypertens ; 42(3): 557-563, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088414

RESUMO

Retinal microcirculation reflects retinal perfusion abnormalities and retinal arterial structural changes at relatively early stages of various cardiovascular diseases. Wall-to-lumen ratio (WLR) may represent the earliest step in hypertension-mediated organ damage.Our objective was to compare functional and structural parameters of retinal microcirculation in a randomly selected urban population sample, in hypertensive and normotensive individuals. DESIGN AND METHOD: A total of 398 randomly selected individuals from an urban population aged 25-65 years, residing in Pilsen, Czech Republic, were screened for major cardiovascular risk factors. Retinal microcirculation was assessed using scanning laser Doppler flowmetry, with data evaluable in 343 patients. Complete data were available for 342 individuals divided into four groups based on blood pressure and control status of hypertension: normotensive individuals ( n  = 213), treated controlled hypertensive individuals ( n  = 30), treated uncontrolled hypertensive individuals ( n  = 26), and newly detected/untreated hypertensive individuals ( n  = 73). RESULTS: There was a tendency to higher wall thickness in treated but uncontrolled hypertensive patients (compared to normotensive and treated controlled hypertensive individuals). WLR was significantly increased in treated but uncontrolled hypertensive patients as well as in individuals with newly detected thus untreated hypertension or in patients with known but untreated hypertension. There was no difference in WLR in treated, controlled hypertensive patients compared with normotensive individuals. CONCLUSION: Our results show that an increased WLR, reflecting early vascular damage, was found in newly detected individuals with hypertension and in untreated hypertensive patients, reflecting early hypertension-mediated vascular damage. Early initiation of hypertension treatment may be warranted.


Assuntos
Hipertensão , Humanos , Microcirculação , República Tcheca/epidemiologia , Pressão Sanguínea , Arteríolas , Vasos Retinianos/diagnóstico por imagem
14.
J Vasc Res ; 61(1): 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38096804

RESUMO

BACKGROUND: Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Arteriolar tone regulation plays a critical role in maintaining appropriate organ blood flow and perfusion distribution, which is vital for both vascular and overall health. SUMMARY: This scoping review aimed to explore the interplay between five major regulators of arteriolar tone: metabolism (adenosine), adrenergic control (norepinephrine), myogenic activation (intravascular pressure), perivascular oxygen tension, and intraluminal flow rates. Specifically, the aim was to address how arteriolar reactivity changes in the presence of other vasoactive stimuli and by what mechanisms. The review focused on animal studies that investigated the impact of combining two or more of these stimuli on arteriolar diameter. Overall, 848 articles were identified through MEDLINE and EMBASE database searches, and 38 studies were included in the final review. KEY MESSAGES: The results indicate that arteriolar reactivity is influenced by multiple factors, including competitive processes, structural limitations, and indirect interactions among stimuli. Additionally, the review identified a lack of research involving female animal models and limited insight into the interaction of molecular signaling pathways, which represent gaps in the literature.


Assuntos
Hemodinâmica , Vasoconstrição , Feminino , Animais , Vasoconstrição/fisiologia , Arteríolas/fisiologia , Norepinefrina , Músculo Liso Vascular/metabolismo
15.
BMJ Open Ophthalmol ; 8(1)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057107

RESUMO

OBJECTIVE: Colour scanning laser ophthalmoscope (cSLO) offers several advantages, including improved image quality and better visualisation of the retinal structures compared with colour fundus photograph (CFP). This study aimed to identify whether cSLO could be used to predict systemic arterial stiffness. METHODS AND ANALYSIS: We retrospectively analysed the data of 54 patients with 103 eyes. In addition to blood pressure and blood data, all patients had cardio-ankle vascular index (CAVI) measurements, as well as images of the fundus acquired using cSLO and CFP. We determined the retinal artery sclerosis (RAS) index from the colour of the retinal artery in cSLO images, the ratio of arterial to venous diameter (A/V ratio), and Scheie's classification in CFP images. The correlation between each parameter and CAVI was examined using Spearman's rank correlation coefficient, and the correlation between Scheie's classification and CAVI was examined using Steel-Dowass tests. RESULTS: CAVI showed a significant positive correlation with the RAS index (r=0.679, p<0.001) but not with the A/V ratio or Scheie's classification. Multiple regression analysis showed that the RAS index was significantly and independently correlated with CAVI. CONCLUSION: cSLO is a non-invasive imaging modality that has the potential to accurately and instantaneously detect early systemic arterial stiffness.


Assuntos
Rigidez Vascular , Humanos , Arteríolas , Estudos Retrospectivos , Cor , Oftalmoscópios , Lasers
16.
BMC Anesthesiol ; 23(1): 411, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087263

RESUMO

BACKGROUND: Ethyl alcohol and cannabis are widely used recreational substances with distinct effects on the brain. These drugs increase accidental injuries requiring treatment under anesthesia. Moreover, alcohol and cannabis are often used in anesthetized rodents for biomedical research. Here, we compared the influence of commonly used forms of anesthesia, injectable ketamine/xylazine (KX) versus inhalant isoflurane, on alcohol- and (-)-trans-delta9-tetrahydrocannabinol (THC) effects on cerebral arteriole diameter evaluated in vivo. METHODS: Studies were performed on male and female Sprague-Dawley rats subjected to intracarotid catheter placement for drug infusion, and cranial window surgery for monitoring pial arteriole diameter. Depth of anesthesia was monitored every 10-15 min by toe-pinch. Under KX, the number of toe-pinch responders was maximal after the first dose of anesthesia and diminished over time in both males and females. In contrast, the number of toe-pinch responders under isoflurane slowly raised over time, leading to increase in isoflurane percentage until deep anesthesia was re-established. Rectal temperature under KX remained stable in males while dropping in females. As expected for gaseous anesthesia, both males and females exhibited rectal temperature drops under isoflurane. RESULTS: Infusion of 50 mM alcohol (ethanol, EtOH) into the cerebral circulation rendered robust constriction in males under KX anesthesia, this alcohol action being significantly smaller, but still present under isoflurane anesthesia. In females, EtOH did not cause measurable changes in pial arteriole diameter regardless of the anesthetic. These findings indicate a strong sex bias with regards to EtOH induced vasoconstriction. Infusion of 42 nM THC in males and females under isoflurane tended to constrict cerebral arterioles in both males and females when compared to isovolumic infusion of THC vehicle (dimethyl sulfoxide in saline). Moreover, THC-driven changes in arteriole diameter significantly differed in magnitude depending on the anesthetic used. Simultaneous administration of 50 mM alcohol and 42 nM THC to males constricted cerebral arterioles regardless of the anesthetic used. In females, constriction by the combined drugs was also observed, with limited influence by anesthetic presence. CONCLUSIONS: We demonstrate that two commonly used anesthetic formulations differentially influence the level of vasoconstriction caused by alcohol and THC actions in cerebral arterioles.


Assuntos
Anestésicos Inalatórios , Anestésicos , Isoflurano , Ketamina , Feminino , Ratos , Masculino , Animais , Isoflurano/farmacologia , Arteríolas , Dronabinol/farmacologia , Ratos Sprague-Dawley , Anestésicos Inalatórios/farmacologia , Etanol/farmacologia , Xilazina/farmacologia
17.
Transl Vis Sci Technol ; 12(11): 16, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962539

RESUMO

Purpose: Adaptive optics scanning laser ophthalmoscopy (AOSLO) enables the visualization and measurement of the retinal microvasculature structure in humans. We investigated the hypothesis that diabetes mellitus (DM) induces remodeling to the wall structure in small retinal arterioles. These alterations may allow better understanding of vascular remodeling in DM. Methods: We imaged retinal arterioles in one eye of 48 participants (26 with DM and 22 healthy controls) with an AOSLO. Structural metrics of 274 arteriole segments (203 with DM and 71 healthy controls) ≤ 50 µm in outer diameter (OD) were quantified and we compared differences in wall thickness (WT), wall-to-lumen ratio (WLR), inner diameter (ID), OD, and arteriolar index ratio (AIR) between controls and participants with DM. We also compared the individual AIR (iAIR) in groups of individuals. Results: The WLR, WT, and AIRs were significantly different in the arteriole segments of DM participants (P < 0.001). The iAIR was significantly deviated in the DM group (P < 0.001) and further division of the participants with DM into groups revealed that there was an effect of the presence of diabetic retinopathy (DR) on the iAIR (P < 0.001). Conclusions: DM induces remodeling of wall structure in small retinal arterioles and in groups of individuals. The use of AIR allows us to assess remodeling independently of vessel size in the retina and to compute an index for each individual subject. Translational Relevance: High-resolution retinal imaging allows noninvasive assessment of small retinal vessel remodeling in DM that can improve our understanding of DM and DR in living humans.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Arteríolas/diagnóstico por imagem , Retina , Vasos Retinianos/diagnóstico por imagem , Retinopatia Diabética/diagnóstico por imagem , Oftalmoscopia
19.
Atherosclerosis ; 385: 117343, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37871404

RESUMO

BACKGROUND AND AIMS: Peripheral arterial disease (PAD) is a leading cause of morbimortality worldwide. Lipocalin-2 (LCN2) has been associated with higher risk of amputation or mortality in PAD and might be involved in muscle regeneration. Our aim is to unravel the role of LCN2 in skeletal muscle repair and PAD. METHODS AND RESULTS: WT and Lcn2-/- mice underwent hindlimb ischemia. Blood and crural muscles were analyzed at the inflammatory and regenerative phases. At day 2, Lcn2-/- male mice, but not females, showed increased blood and soleus muscle neutrophils, and elevated circulating pro-inflammatory monocytes (p < 0.05), while locally, total infiltrating macrophages were reduced (p < 0.05). Moreover, Lcn2-/- soleus displayed an elevation of Cxcl1 (p < 0.001), and Cxcr2 (p < 0.01 in males), and a decrease in Ccl5 (p < 0.05). At day 15, Lcn2 deficiency delayed muscle recovery, with higher density of regenerating myocytes (p < 0.04) and arterioles (αSMA+, p < 0.025). Reverse target prediction analysis identified miR-138-5p as a potential regulator of LCN2, showing an inverse correlation with Lcn2 mRNA in skeletal muscles (rho = -0.58, p < 0.01). In vitro, miR-138-5p mimic reduced Lcn2 expression and luciferase activity in murine macrophages (p < 0.05). Finally, in human serum miR-138-5p was inversely correlated with LCN2 (p ≤ 0.001 adjusted, n = 318), and associated with PAD (Odds ratio 0.634, p = 0.02, adjusted, PAD n = 264, control n = 54). CONCLUSIONS: This study suggests a possible dual role of LCN2 in acute and chronic conditions, with a probable role in restraining inflammation early after skeletal muscle ischemia, while being associated with vascular damage in PAD, and identifies miR-138-5p as one potential post-transcriptional regulator of LCN2.


Assuntos
MicroRNAs , Doença Arterial Periférica , Animais , Humanos , Masculino , Camundongos , Arteríolas/metabolismo , Modelos Animais de Doenças , Membro Posterior/metabolismo , Isquemia/genética , Lipocalina-2/genética , Lipocalina-2/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Arterial Periférica/genética
20.
Invest Ophthalmol Vis Sci ; 64(13): 25, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37847224

RESUMO

Purpose: A recent study has shown that an increase in the arterial blood pressure of approximately 10 mm Hg in healthy persons can increase the oxygen saturation in venules from the retinal periphery but not from the macular area. The purpose of the present study was to investigate whether a higher increase in blood pressure has further effects on oxygen saturations and whether this is accompanied with changes in retinal blood flow. Methods: In 30 healthy persons, oxygen saturation, diameter, and blood flow were measured in arterioles to and venules from the retinal periphery and the macular area. The experiments were performed before and during an experimental increase in arterial blood pressure of (mean ± SD) 18.3 ± 6.2 mm Hg. Results: A higher number of venules than arterioles branching from the temporal vascular arcades to the macular area was balanced by a smaller diameter of the venules. Isometric exercise induced significant contraction of both peripheral and macular arterioles (P < 0.01 for both comparisons) and significant increase in oxygen saturation in both peripheral and macular venules (P < 0.001 for both comparisons). This was accompanied with a significant increase in the blood flow in the peripheral arterioles and venules (P = 0.4 for both comparisons), but not in their macular counterparts (P > 0.06 for both comparisons). Conclusions: Increased systemic blood pressure leading to arterial contraction and increased venous oxygen saturation in the retina in normal persons can increase peripheral blood flow without significant effects on macular blood flow. This may contribute to explaining regional differences in the response pattern of retinal vascular disease.


Assuntos
Saturação de Oxigênio , Oxigênio , Humanos , Vênulas/fisiologia , Retina , Vasos Retinianos , Oximetria , Arteríolas/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Exercício Físico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...